Советы

Nat модем. Преобразование сетевых адресов (NAT)

Nat модем. Преобразование сетевых адресов (NAT)

Компьютер подключается к глобальной сети несколькими способами. Это может быть прямое подключение, в этом случае имеется внешний IP адрес (динамический или статический), который виден из интернета. Или же подключение может осуществляться через маршрутизатор. При таком подключении внешний адрес имеет только роутер, а все подключенные к нему пользователи являются клиентами другой сети. Роутер берет на себя распределение входящего и исходящего трафика между клиентами и интернетом. Возникает ряд проблем при подключении через маршрутизатор:

  • перестают работать торрент-клиенты;
  • нет возможности подключиться к игровому онлайн серверу;
  • нет обращений к серверу внутренней сети из вне ни по одному протоколу и ни на один порт.

Решить проблему помогает правильная настройка маршрутизатора, а именно сервиса NAT на нем. Для того, чтобы понять, как настроить NAT на роутере , необходимом узнать, что такое трансляция адресов и для чего это используется.

NAT: общие определения

NAT (network address translation) или трансляция сетевых адресов - это процесс перевода внутренних или локальных адресов во внешние. NAT используется абсолютно всеми маршрутизаторами независимо от их конфигурации, назначения и стоимости. По умолчанию роутер запрещает напрямую обращаться к любому устройству, находящимися внутри сети. Он блокирует доступ на любые порты для входящих соединений поступающие из интернета.

Но NAT и Firewall это суть разные понятия. Firewall просто запрещает доступ к ресурсу по определенному TCP или UDP порту, может устанавливаться на локальной машине для ограничения доступа только к ней или же на сервере для фильтрации трафика по всей локальной сети. Перед NAT задача стоит более развернуто. Сервис запрещает или разрешает доступ внутри сети по конкретному IP адресу или диапазону адресов. Таким образом клиент, который обращается к ресурсу не видит действительного IP адреса ресурса. NAT переводит внутренний IP в адрес, который будет виден из интернета.

Чтобы проверить находится ли компьютер за NAT или транслирует в интернет реальный адрес можно следующим образом:

  • в Windows нужно нажать «Пуск - Выполнить - cmd» и прописать ipconfig и нажать «Ввод»;
  • в Linux и MacOS в терминале выполняется ifconfig .

Вывод команды показывает следующие данные:

  • IP - реальный, действительный адрес компьютера;
  • Subnet mask - маска подсети;
  • Gateway - адрес шлюза маршрутизатора.

Как теперь разобрать является ли адрес локальным или же напрямую «смотрит» в интернет. Согласно спецификации, существует четыре диапазона адресов, которые ни при каких обстоятельствах не используются в интернете, а являются исключительно локальными:

  1. 0.0.0 - 10.255.255.255
  2. Х.0.0 - 172.Х.255.255, где Х в диапазоне от 16 до 31.
  3. 168.0.0 - 192.168.255.255
  4. 254.0.0 - 169.254.255.255

В том случае, когда адрес машины попадает в один из этих диапазонов, следует считать, что компьютер находится в локальной сети или «за» NAT. Можно также дополнительно использовать специальные службы, которых есть множество в интернете для определения реального IP адреса. Теперь стало понятнее находится ли компьютер за NAT в роутере что это за сервис, и за то он отвечает.

Проблемы NAT и возможности решения

С момента появления NAT сразу же стали проявляться проблемы. Невозможно было получить доступ по отдельному протоколу или в работе отдельных программ. Данные проблемы так и не удалось полностью устранить, получилось только найти некоторые варианты решения только с использованием трансляции адресов, но ни один вариант решения не является правильным с точки зрения спецификаций администрирования.

В качестве примера можно рассмотреть протокол передачи файлов (FTP), который был саммым распространенным к появлению NAT. Для файловых серверов (FTP) ключевым является реальный IP адрес компьютера, который посылает запрос на доступ. Здесь преобразование адресов не работает, потому что запрос на сервер отправляется с IP, невидимого из интернета. Нет возможности создать сессию клиент-сервер для загрузки файлов. Обойти проблему помогает использование FTP в пассивном режиме. В этом режиме используется другой набор команд, и работа ведется через специальный прокси-сервер, который дополнительно открывает другой порт для соединения и передает его программе клиенту. Проблемой такого решения является то, что необходимо использовать сторонние FTP клиенты.

Полностью избавиться от проблемы доступа получилось только с появлением SOCKS (Socket Secure) протокола. Этот протокол позволяет обмениваться данными через прокси-сервер в «прозрачном» режиме. То есть сервер не будет знать, что происходит подмена адресов с локальных на глобальные и наоборот. Изобретение SOCKS позволило избавиться от ряда проблем и упростить работу администрирования сети:

  • создает на сервере службу, слушающую входящие запросы, что позволяет обслуживать многосвязные протоколы наподобие FTP;
  • нет необходимости использовать и обслуживать службу DNS внутри локальной сети. Теперь такая задача возложена на кэширующие прокси;
  • дополнительные способы авторизации позволяют с большей эффективностью проводить отслеживание и фильтрацию пакетов. Средствами NAT можно фильтровать запросы только по адресам.

Использование NAT и SOCKS не всегда оправдано с точки зрения сетевого администрирования. Иногда более целесообразным является использование специализированных прокси, которых существуете множество для любого протокола передачи данных.

Настройка NAT на компьютере

Все современные операционные системы имеют уже встроенный NAT. В Windows эта функция реализована с 1999 года с появлением Windows XP. Управление NAT осуществляется непосредственно через свойства сетевого подключения. Чтобы настроить службу нужно сделать следующее:

  • Через меню «Пуск» запустить программу «Панель управления».
  • Найти иконку «Сетевые подключения» и запустить ее.
  • В новом окне кликнуть правой кнопкой мыши на активном сетевом подключении и выбрать в выпадающем списке «Свойства».
  • Перейти на вкладку «Дополнительно».
  • Установить галочки напротив «Разрешить другим пользователям сети использовать подключение к интернету данного компьютера».
  • Подтвердить изменение кнопкой «Ок».

Если при выведется сообщение что невозможно запустить службу общего доступа, нужно убедиться, что запущена служба DHCP-клиент. При необходимости можно установить запуск службы принудительно, а не по запросу автоматически.

Настройка NAT на маршрутизаторе

Что такое NAT в роутере , целесообразность его использования и проблемы, которые он может создать было описано выше, теперь можно перейти непосредственно к реализации задачи. Настройка службы на роутере зависит от его модели, используемой прошивки и других параметров. Но достаточно понять механизм, чтобы не возникало сложностей и вопросов по настройке отдельного устройства. Для настройки выполняются следующие действия (в качестве примера настройки выполняются на роутере Zyxel на прошивке v1):

  • В браузере зайти на страницу настроек роутера.
  • Перейти в меню «Network — Routing» на вкладку «Policy routing».

Открывшаяся страница и будет той, которая управляет политиками доступа и маршрутизацией. Здесь необходимо включить службу, активировав переключатель в положение «Enable». Сами настройки выполняются в группе «Criteria». Выбираются параметры NAT по нескольким категориям фильтров:

  • User - трансляция по определенному пользователю.
  • Incoming - по сетевому интерфейсу.
  • Source Address - подмена адреса по адресу источника.
  • Destination Address - по адресу конечного получателя
  • Service - по конкретному порту службы.

В качестве объекта перенаправления можно выбрать следующие варианты:

  • Auto - автоматический выбор объекта назначения. По умолчанию установлен Wan интерфейс.
  • Gateway - шлюз, указанный заранее в настройках.
  • VPN Tunel - соответственно через VPN туннель.
  • Trunk - диапазон интерфейсов, настроенных на совместную работу.
  • Interface - конкретный интерфейс по выбору.

В каждом отдельно взятом роутере настройки и название пунктов меню может отличаться, но принцип построения NAT остается неизменным.

Это абсолютно разные технологии. Не путайте их.

Что такое NAT

NAT - собирательный термин, обозначает технологию трансляции сетевых адресов и/или протоколов. NAT устройства производят над проходящими пакетами преобразования с заменой адресов, портов, протоколов и пр.

Существуют более узкие понятие SNAT, DNAT, маскарадинг, PAT, NAT-PT и т.д.

зачем нужен NAT, как его используют

Для вывода в интернет внутренней сети

  • через пул внешних адресов
  • через один внешний адрес

Для подмены внешнего ip адреса другим (перенаправление трафика)

Для балансировки нагрузки между одинаковыми серверами с разными ip адресами.

Для объединения двух локальных сетей с пересекающейся внутренней адресацией.

как устроен NAT

s+d NAT (branch merging - evil!)

port-mapping, прокидывание портов

Преимущества и недостатки

Несовместим с некоторыми протоколами. Конкретная реализация NAT должна поддерживать инспекцию требуемого протокола.

NAT обладает свойством "экранировать" внутреннюю сеть от внешнего мира, но его нельзя использовать вместо межсетевого экрана.

Настройка на Cisco IOS

Маршрутизаторы и межсетевые экраны Cisco поддерживают различные типы NAT, в зависимости от набора опций ПО. Наиболее используемым является метод NAT с привязкой внутренних локальных адресов в различные порты одного внешнего адреса (PAT в терминологии Cisco).

Для настройки NAT на маршрутизаторе требуется: o Определить трафик, который необходимо транслировать (при помощи access-list’ов или route-map);

Ip access-list extended LOCAL permit ip 10.0.0.0 0.255.255.255 any

Route-map INT1 match ip address LOCAL match interface FastEthernet0/1.1

Аксесс-лист LOCAL выбирает весь трафик из 10 сети.

Роут-мап INT1 выбирает трафик аксесс-листа LOCAL, выходящий через сабинтерфейс Fa 0/1.1

o Определить на какие внешние адреса проводить трансляцию. Выбрать пул внешних адресов. Для PAT достаточно одного адреса.

Ip nat pool GLOBAL 212.192.64.74 212.192.64.74 netmask 255.255.255.0

Задание пула внешних адресов с именем GLOBAL. В пуле всего один адрес.

o Включить NAT для выбранных внутренних и внешних адресов.

Ip nat inside source route-map INT1 pool GLOBAL overload

Включение NAT для трансляции адресов источника на внутреннем интерфейсе. Будет транслироваться только трафик попадающий под условия роут-мапа INT1. Внешний адрес будет браться из пула GLOBAL.

Ip nat inside source static tcp 10.0.0.1 23 212.192.64.74 23 extend

Статическое «прокидывание порта» или «публикация сервиса». В трафике идущем внутрь на адрес 212.192.64.74 на порт tcp 23 будет заменен адресат на адрес 10.0.0.1 и порт 23.

o Назначить внутренние и внешние интерфейсы.

Interface FastEthernet0/0 ip nat inside interface FastEthernet0/1.1 ip nat outside

Интерфейс Fa 0/0 назначен внутренним для NAT.

Сабинтерфейс Fa 0/1.1 назначен внешним для NAT.

O Отладка и диагностика:

Sh ip nat translations - просмотр таблицы текущих трансляций; clear ip nat translations - удалить все текущие трансляции; debug ip nat – включение отладочных сообщений (undebug all – выключение отладки).

Примеры

Приведем несколько демонстрационных примеров для эмулятора cisco Packet Tracer.

Простая схема вывода небольшой сети в интернет через пул внешних адресов

Простая схема вывода сети в интернет через один внешний адрес

Схема объединения сетей с пересекающейся адресацией

Порядок работы NAT

Порядок применения правил NAT различается у различных производителей и на различном оборудовании. Приведем порядок применения политик NAT для маршрутизаторов на cisco IOS:

Inside-to-Outside

If IPSec then check input access list decryption - for CET (Cisco Encryption Technology) or IPSec check input access list check input rate limits input accounting redirect to web cache policy routing routing NAT inside to outside (local to global translation) crypto (check map and mark for encryption) check output access list inspect (Context-based Access Control (CBAC)) TCP intercept encryption Queueing

Outside-to-Inside

If IPSec then check input access list decryption - for CET or IPSec check input access list check input rate limits input accounting redirect to web cache NAT outside to inside (global to local translation) policy routing routing crypto (check map and mark for encryption) check output access list inspect CBAC TCP intercept encryption Queueing

Интернет-канал от одного провайдера через NAT

Простая схема реализации NAT с одним провайдером

Резервирование интернет-канала от двух провайдеров при помощи NAT, ip sla

Дано: мы получаем для нескольких компьютеров интернет от провайдера ISP1. Он выделили нам адрес 212.192.88.150. Выход в интернет организован с этого ip адреса через NAT.

Задача: подключить резервного провайдера - ISP2. Он выделит нам адрес 212.192.90.150. Организовать балансировку трафика: web-трафик пускать через ISP1, прочий трафик - через ISP2. В случае отказа одного из провайдеров - пускать весь трафик по живому каналу.

В чем сложность задачи? clear ip nat translations?

Схема

Конфиг

1 clear ip nat translations *

Найден, оттестирован такой кусок EEM. Не на всех версиях IOS генерируется событие.. Надо уточнить.

! event manager applet NAT-TRACK event syslog pattern "TRACKING-5-STATE" action 0.1 cli command "enable" action 0.2 wait 3 action 0.3 cli command "clear ip nat translation *" action 0.4 syslog msg "NAT translation cleared after track state change" !

2 При падении интерфейса на провайдера, велики шансы, что его шлюз будет пинговаться через второго

! username ИМЯ password 0 ПАРОЛЬ enable secret 0 ПАРОЛЬКОНФИГА! ! контроль входа на маршрутизатор line vty 0 4 login local ! ! ДХЦП ip dhcp pool LAN network ВнутрСеть Маска default-router Шлюз dns-server 10.11.12.13 ! DNS - фиктивный придумали - НЕ из нашей локальной сети! ! ! Монитор пинга на адрес шлюза провайдера-1 ! Ждать ответа 100 мс! Пинговать с частотой 1 секунда ip sla monitor 1 type echo protocol ipIcmpEcho ШлюзПров1 source-interface ИнтерфейсНаПров1 timeout 100 frequency 1 ! ! Монитор пинга на провайдера-2 ip sla monitor 2 type echo protocol ipIcmpEcho ШлюзПров2 source-interface ИнтерфейсНаПров2 timeout 50 frequency 1 ! ! Запуск пинговалок 1 и 2, сейчас и навсегда ip sla monitor schedule 1 life forever start-time now ip sla monitor schedule 2 life forever start-time now ! ! Трэки 10 и 20 - отслеживание состояния пинговалок! Реагирует на состояние Down или Up с задержкой 1 сек. track 10 rtr 1 reachability delay down 1 up 1 ! track 20 rtr 2 reachability delay down 1 up 1 ! ! ! Маршруты на все внешние сети на обоих провайдеров! Маршруты привязаны к трэкам! и будут активироваться только если трэк в состоянии Up ! т.е. если шлюз на соответствующего провайдера доступен ip route 0.0.0.0 0.0.0.0 ШлюзПров1 track 10 ip route 0.0.0.0 0.0.0.0 ШлюзПров2 track 20 ! ! ! int fa 0/0 no shut ! ! Саб-интерфейсы в сторону внешних провайдеров! помечаются как outside для NAT interface FastEthernet0/0.1 description ISP1 encaps dot1q НомерВланПров1 ip address ipНаПров1 Маска ip nat outside ! interface FastEthernet0/0.2 description ISP2 encapsulation dot1Q НомерВланПров2 ip address ipНаПров2 Маска ip nat outside ! ! Интерфейс на внутр сеть! помечается как inside для NAT ! Привязывается политика маршрутизации PBR interface FastEthernet0/1 ip address ipНаВнутрСеть маска ip nat inside ip policy route-map PBR no shut ! ! Аксесс-листы из внутр сети наружу! На веб-трафик и на все остальное ip access-list extended LOCAL permit ip внутрСеть any ! ip access-list extended WEB permit tcp внутрСеть any eq www permit tcp внутрСеть any eq 443 ! ip access-list extended ALL permit ip any any ! ! ! хитрый рут-мап PBR ! Если трафик из локалки на Веб! то назначить ему шлюзом первого провайдера! Иначе, прочему трафику из локалки! назначить шлюзом второго провайдера. ! При назначении шлюза проверяются Трэки route-map PBR permit 10 match ip address WEB set ip next-hop verify-availability ШлюзПров1 1 track 10 ! route-map PBR permit 20 match ip address ALL set ip next-hop verify-availability ШлюзПров2 1 track 20 ! ! ! хитрый рут-мап ISP1 ! срабатывает если трафик из локалки! пытается выйти через интерфейс Fa0/0.1 route-map ISP1 permit 10 match ip address LOCAL match interface FastEthernet0/0.1 ! ! хитрый рут-мап ISP2 ! срабатывает если трафик из локалки! пытается выйти через интерфейс Fa0/0.2 route-map ISP2 permit 10 match ip address LOCAL match interface FastEthernet0/0.2 ! ! ! Наконец, NAT ;-) ! ! Трафик из локалки в первого провайдера Натить через первый интерфейс ip nat inside source route-map ISP1 interface FastEthernet0/0.1 overload ! ! Трафик из локалки во второго провайдера Натить через второй интерфейс ip nat inside source route-map ISP2 interface FastEthernet0/0.2 overload ! ! Трафик на фиктивный ДНС переНатить на Гугл-ДНС ip nat outside source static 8.8.8.8 10.11.12.13 no-alias ! ! проброс внутреннего порта 3389 на внешний порт 1111 ip nat inside source static tcp внутрХост 3389 внешip 1111 extendable ip nat inside source static tcp внутрХост 3389 внешip 1111 extendable ! !

Разное

CGN (carrier grade nat) с особым пулом приватных адресов

NAT как ALG (application layer gateway), (plain text protocols e.g. SIP)

2 32 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6 , но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation) .

Что такое NAT

Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16 . Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес.

И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей.

Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес.

Маршрутизатор NAT обычно работает на границе Stub -сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети.

Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес.

Терминология NAT

В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям.

При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим.

NAT включает в себя четыре типа адресов:

  • Внутренний локальный адрес (Inside local address) ;
  • Внутренний глобальный адрес (Inside global address) ;
  • Внешний местный адрес (Outside local address) ;
  • Внешний глобальный адрес (Outside global address) ;

При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом:

  • Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT;
  • Внешний адрес (Outside address) - адрес устройства назначения;
  • Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети;
  • Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети;

Рассмотрим это на примере схемы.


На рисунке ПК имеет внутренний локальный (Inside local ) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside ) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local ) адрес ПК транслируется в 208.141.16.5 (inside global ). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4.

Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами.

Термины, inside и outside , объединены с терминами local и global , чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам.

На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону.


Внутренний локальный адрес (Inside local address ) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес.

Внутренний глобальный адрес (Inside global address ) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address ) на внутренний глобальный адрес (Inside global address ). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5.

Внешний глобальный адрес (Outside global address ) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы.

Внешний локальный адрес (Outside local address ) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4

Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address ) на 208.141.16.5. (Inside global address ). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК.

Типы NAT

Существует три типа трансляции NAT:

  • Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами;
  • Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами;
  • Port Address Translation (NAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload ;

Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Статическая NAT таблица выглядит так:


Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Динамическая NAT таблица выглядит так:


Port Address Translation (PAT)

PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT.

С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP , оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты.

Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы.


Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет.

Адрес источника (Source Address ) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address ) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP.

Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный.

В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535 . Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов.

То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста.

Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора.

А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID . ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4.

Преимущества и недостатки NAT

NAT предоставляет множество преимуществ, в том числе:

  • NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов;
  • NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений;
  • NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов;

  • NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы;

Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем:

  • Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP . NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени;
  • Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT;
  • Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок;
  • Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования;
  • Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата;

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

Интернет -маршрутизатором, сервером доступа, межсетевым экраном. Наиболее популярным является Source NAT (SNAT), суть механизма которого состоит в замене адреса источника (source) при прохождении пакета в одну сторону и обратной замене адреса назначения ( destination ) в ответном пакете. Наряду с адресами источника/назначения могут также заменяться номера портов источника и назначения.

Помимо SNAT, т.е. предоставления пользователям локальной сети с внутренними адресами доступа к сети Интернет , часто применяется также Destination NAT , когда обращения извне транслируются межсетевым экраном на сервер в локальной сети, имеющий внутренний адрес и потому недоступный из внешней сети непосредственно (без NAT ).

На рисунках ниже приведен пример действия механизма NAT .


Рис. 7.1.

Пользователь корпоративной сети отправляет запрос в Интернет , который поступает на внутренний интерфейс маршрутизатора, сервер доступа или межсетевого экрана (устройство NAT ).

Устройство NAT получает пакет и делает запись в таблице отслеживания соединений, которая управляет преобразованием адресов.

Затем подменяет адрес источника пакета собственным внешним общедоступным IP-адресом и посылает пакет по месту назначения в Интернет .

Узел назначения получает пакет и передает ответ обратно устройству NAT .

Устройство NAT , в свою очередь , получив этот пакет, отыскивает отправителя исходного пакета в таблице отслеживания соединений, заменяет IP- адрес назначения на соответствующий частный IP- адрес и передает пакет на исходный компьютер . Поскольку устройство NAT посылает пакеты от имени всех внутренних компьютеров, оно изменяет исходный сетевой порт и данная информация хранится в таблице отслеживания соединений.

Существует 3 базовых концепции трансляции адресов:

  • статическая (SAT, Static Network Address Translation),
  • динамическая (DAT, Dynamic Address Translation),
  • маскарадная (NAPT, NAT Overload, PAT).

Статический NAT отображает локальные IP-адреса на конкретные публичные адреса на основании один к одному. Применяется, когда локальный хост должен быть доступен извне с использованием фиксированных адресов.

Динамический NAT отображает набор частных адресов на некое множество публичных IP-адресов. Если число локальных хостов не превышает число имеющихся публичных адресов, каждому локальному адресу будет гарантироваться соответствие публичного адреса. В противном случае, число хостов, которые могут одновременно получить доступ во внешние сети, будет ограничено количеством публичных адресов.

Маскарадный NAT (NAPT, NAT Overload , PAT , маскарадинг) – форма динамического NAT , который отображает несколько частных адресов в единственный публичный IP- адрес , используя различные порты. Известен также как PAT ( Port Address Translation ).

Механизмов взаимодействия внутренней локальной сети с внешней общедоступной сетью может быть несколько – это зависит от конкретной задачи по обеспечению доступа во внешнюю сеть и обратно и прописывается определенными правилами. Определены 4 типа трансляции сетевых адресов:

  • Full Cone (Полный конус)
  • Restricted Cone (Ограниченный конус)
  • Port Restricted Cone (Порт ограниченного конуса)
  • Symmetric (Симметричный)

В первых трех типах NAT для взаимодействия разных IP-адресов внешней сети с адресами из локальной сети используется один и тот же внешний порт . Четвертый тип – симметричный – для каждого адреса и порта использует отдельный внешний порт .

Full Cone , внешний порт устройства (маршрутизатора, сервера доступа, межсетевого экрана) открыт для приходящих с любых адресов запросов. Если пользователю из Интернета нужно отправить пакет клиенту, расположенному за NAT ’ом, то ему необходимо знать только внешний порт устройства, через который установлено соединение. Например, компьютер за NAT ’ом с IP-адресом 192.168.0.4 посылает и получает пакеты через порт 8000, которые отображаются на внешний IP- адрес и порт , как 10.1.1.1:12345. Пакеты из внешней сети приходят на устройство с IP-адресом:портом 10.1.1.1:12345 и далее отправляются на клиентский компьютер 192.168.0.4:8000.

Во входящих пакетах проверяется только транспортный протокол; адрес и порт назначения, адрес и порт источника значения не имеют.

При использовании NAT , работающему по типу Restricted Cone , внешний порт устройства (маршрутизатора, сервера доступа, межсетевого экрана) открыт для любого пакета, посланного с клиентского компьютера, в нашем примере: 192.168.0.4:8000. А пакет, пришедший из внешней сети (например, от компьютера 172.16.0.5:4000) на устройство с адресом:портом 10.1.1.1:12345, будет отправлен на компьютер 192.168.0.4:8000 только в том случае, если 192.168.0.4:8000 предварительно посылал запрос на IP- адрес внешнего хоста (в нашем случае – на компьютер 172.16.0.5:4000). То есть, маршрутизатор будет транслировать входящие пакеты только с определенного адреса источника (в нашем случае компьютер 172.16.0.5:4000), но номер порта источника при этом может быть любым. В противном случае, NAT блокирует пакеты, пришедшие с хостов, на которые 192.168.0.4:8000 не отправлял запроса.

Механизм NAT Port Restricted Cone почти аналогичен механизму NAT Restricted Cone. Только в данном случае NAT блокирует все пакеты, пришедшие с хостов, на которые клиентский компьютер 192.168.0.4:8000 не отправлял запроса по какому-либо IP-адресу и порту. Mаршрутизатор обращает внимание на соответствие номера порта источника и не обращает внимания на адрес источника. В нашем примере маршрутизатор будет транслировать входящие пакеты с любым адресом источника, но порт источника при этом должен быть 4000. Если клиент отправил запросы во внешнюю сеть к нескольким IP-адресам и портам, то они смогут посылать пакеты клиенту на IP- адрес : порт 10.1.1.1:12345.

Symmetric NAT существенно отличается от первых трех механизмов способом отображения внутреннего IP-адреса:порта на внешний адрес : порт . Это отображение зависит от IP-адреса:порта компьютера, которому предназначен посланный запрос . Например, если клиентский компьютер 192.168.0.4:8000 посылает запрос компьютеру №1 (172.16.0.5:4000), то он может быть отображен как 10.1.1.1:12345, в тоже время, если он посылает с того же самого порта (192.168.0.4:8000) на другой IP- адрес , он отображается по-другому (10.1.1.1:12346).

  • Позволяет предотвратить или ограничить обращение снаружи к внутренним хостам, оставляя возможность обращения из внутренней сети во внешнюю. При инициации соединения изнутри сети создаётся трансляция. Ответные пакеты, поступающие снаружи, соответствуют созданной трансляции и поэтому пропускаются. Если для пакетов, поступающих из внешней сети, соответствующей трансляции не существует (а она может быть созданной при инициации соединения или статической), они не пропускаются.
  • Позволяет скрыть определённые внутренние сервисы внутренних хостов/серверов. По сути, выполняется та же указанная выше трансляция на определённый порт, но возможно подменить внутренний порт официально зарегистрированной службы (например, 80-й порт TCP (HTTP-сервер) на внешний 54055-й). Тем самым, снаружи, на внешнем IP-адресе после трансляции адресов на сайт (или форум) для осведомлённых посетителей можно будет попасть по адресу http://dlink.ru:54055 , но на внутреннем сервере, находящимся за NAT, он будет работать на обычном 80-м порту.
  • Однако следует упомянуть и о недостатках данной технологии:

    1. Не все протоколы могут "преодолеть" NAT. Некоторые не в состоянии работать, если на пути между взаимодействующими хостами есть трансляция адресов. Опеределенные межсетевые экраны, осуществляющие трансляцию IP-адресов, могут исправить этот недостаток, соответствующим образом заменяя IP-адреса не только в заголовках IP, но и на более высоких уровнях (например, в командах протокола FTP).
    2. Из-за трансляции адресов "много в один" появляются дополнительные сложности с идентификацией пользователей и необходимость хранить полные логи трансляций.
    3. Атака DoS со стороны узла, осуществляющего NAT – если NAT используется для подключения многих пользователей к одному и тому же сервису, это может вызвать иллюзию DoS-атаки на сервис (множество успешных и неуспешных попыток). Например, избыточное количество пользователей ICQ за NAT приводит к проблеме с подключением к серверу некоторых пользователей из-за превышения допустимой скорости подключений.

    NAT или трансляция сетевых адресов является способом переназначения одного адресного пространства в другой путем изменения информации сетевых адресов в Internet Protocol или IP. Заголовки пакетов меняются в то время, когда они находятся в пути через устройства маршрутизации. Данный метод использовался первоначально для более простого перенаправления трафика в сетях IP без необходимости нумерации каждого хоста. Он стал важным и популярным инструментом для распределения и сохранения глобального адресного пространства в условиях острого недостатка адресов IPv4.

    Что такое NAT?

    Использование трансляции сетевых адресов заключается в отображении каждого адреса из одного адресного пространства к адресу, который находится в другом адресном пространстве. Это может понадобиться в том случае, если изменился провайдер услуг, а у пользователя нет возможности публично объявить новый маршрут к сети. Технология NAT в условиях глобального истощения адресного пространства с конца 90-х годов используется все чаще. Обычно данная технология используется в сочетании с IP-шифрованием. IP-шифрование представляет собой метод перехода нескольких IP адресов в одно пространство. Данный механизм реализован в устройстве маршрутизации, использующем таблицы перевода с сохранением состояния для отображения в один IP адрес скрытых адресов. Также он перенаправляет на выходе все исходящие пакеты IP. Таким образом, данные пакеты отображаются выходящими из устройства маршрутизации. Ответы в обратном канале связи отображаются в исходном IP адресе при помощи правил, которые хранятся в таблицах перевода. В свою очередь таблицы перевода очищаются по истечении короткого времени, если трафик не обновит свое состояние. Вот в чем заключается основной механизм NAT. Что же это означает? Данная технология позволяет организовывать связь через маршрутизатор только в том случае, когда соединение происходит в зашифрованной сети, так как это создает таблицы перевода. Внутри такой сети веб-браузер может просматривать сайт за ее пределами, однако будучи установленным вне ее, он не может открыть ресурс, который в ней размещен. Большинство устройств NAT сегодня позволяют сетевому администратору конфигурировать записи таблицы перевода для постоянного применения. Данная функция особенно часто упоминается как перенаправление портов или статическая NAT. Она дает возможность трафику, исходящему во «внешнюю» сеть, достичь назначенных хостов в зашифрованной сети. Из-за того, что метод, используемый с целью сохранения адресного пространства IPv4 пользуется популярностью, термин NAT практически стал синонимом метода шифрования. Так как трансляция сетевых адресов меняет информацию об адресе IP-пакетов, это может иметь серьезные последствия для качества подключения. Так что она требует пристального внимания ко всем деталям реализации. Способы использования NAT друг от друга отличаются в своем конкретном поведении в различных ситуациях, которые касаются влияния на сетевой трафик.

    Базовая NAT

    Простейший тип NAT позволяет обеспечить трансляцию IP-адресов «один-к-одному». Основным типом данной трансляции является RFC-2663. В данном случае меняются только IP-адреса, а также контрольная сумма заголовков IP. Можно использовать основные типы трансляции для соединения двух сетейIP, имеющих несовместимую адресацию.

    Большая часть разновидностей NAT способна сопоставить несколько частных хостов к одному IP-адресу, который публично обозначен. Локальная сеть в типичной конфигурации использует один из назначенных «частных» IP-адресов подсети. В этой сети маршрутизатор имеет частный адрес в пространстве. Также маршрутизатор подключается к интернету при помощи «публичного адреса», который присваивается провайдером интернета. Поскольку трафик проходит из локальной сети Интернет, то адрес источника в каждом пакете переводится из частного в публичный на лету. Также маршрутизатор отслеживает основные данные о каждом активном соединении. В частности, это касается такой информации, как адрес и порт назначения. Когда ответ возвращается к нему, он использует данные соединения, которые сохраняются во время выездного этапа. Это необходимо для того, чтобы определить частный адрес внутренней сети, к которому нужно направить ответ. Основным преимуществом такого функционала является то, что он является практическим решением проблемы исчерпания адресного пространства IPv4. С помощью одного IP-адреса к интернету могут быть подключены даже крупные сети. Все дейтаграммы пакетов в IP сетях имеют два IP адреса – это исходный адрес и адрес пункта назначения. Пакеты, проходящие из частной сети к сети общего пользования, будут иметь адрес источника пакетов, который изменяется во время перехода от публичной сети к частной. Также возможны и более сложные конфигурации.

    Особенности настройки NAT

    Настройка NAT может иметь определенные особенности. Чтобы избежать трудностей, связанных с переводом возвращенных пакетов, могут потребоваться их дальнейшие модификации. Большая часть интернет-трафика будет идти через протоколы UDP иTCP. Их номера изменяются таким образом, что адреса IP и номера порта при обратной отправке данных начинает сопоставляться. Протоколы, которые не основаны на UDP или TCP, требуют других методов перевода. Как правило, ICMP или протокол управления сообщения в сети интернет, соотносит передаваемую информацию с имеющимся соединением. Это значит, что они должны отображаться с использованием того же адреса IP и номера, который был установлен изначально. Что же необходимо учитывать? Настройка NAT в роутере не предоставляет ему возможности соединения «из конца в конец». По этой причине такие маршрутизаторы не могут участвовать в некоторых интернет-протоколах. Услуги, требующие инициации соединений TCP от внешней сети или пользователей без протоколов, могут быть просто недоступны. Если NAT маршрутизатор не делает особых усилий для поддержки таких протоколов, то входящие пакеты могут так и не достичь места назначения. Некоторые протоколы могут быть размещены в одной трансляции между участвующими хостами иногда при помощи шлюза прикладного уровня. Однако соединение не будет установлено, когда обе системы при помощи NAT отделены от сети Интернет. Также использование NAT усложняет туннельные протоколы, типа IPsec, так как она меняет значения в заголовках, которые взаимодействуют с проверками целостности запросов.

    NAT: существующая проблема

    Основным принципом интернета является соединение «из конца в конец». Оно существует с момента его разработки. Текущее состояние сети только доказывает, что NAT является нарушением данного принципа. В профессиональной среде имеется серьезная озабоченность, связанная с повсеместным использованием в IPv6 трансляции сетевых адресов. Таким образом, сегодня поднимается вопрос о том, как можно устранить эту проблему. Из-за того, что таблицы, сохраняющие состояние трансляции в маршрутизаторах NAT по своей природе не вечны, устройства внутренней сети утрачивают соединение IP в течение очень короткого временного периода. Нельзя забывать об этом обстоятельстве говоря о том, что собой представляет NAT в роутере. Это значительно сокращает время работы компактных устройств, которые работают на аккумуляторах и батарейках.

    Масштабируемость

    При использовании NAT также отслеживаются только те порты, которые могут быть быстро истощены внутренними приложениями, которые используют несколько одновременных соединений. Это могут быть HTTP запросы для страниц с большим количеством встроенных объектов. Смягчить данную проблему можно путем отслеживания IP адреса в назначениях в дополнение к порту. Один локальный порт таким образом может быть разделен большим количеством удаленных хостов.

    NAT: некоторые сложности

    Так как все внутренние адреса оказываются замаскированными под один общедоступный, для внешних хостов невозможно инициировать подключение к определенному внутреннему узлу без настройки специальной конфигурации на брандмауэре. Данная конфигурация должна перенаправлять подключения к определенному порту. Приложения для IP-телефонии, видеоконференций и подобные сервисы для своего нормального функционирования должны использовать методы обхода NAT. Порт перевода Raptи обратный адрес позволяет хосту, у которого IP адрес меняется время от времени, оставаться доступным в качестве сервера при помощи фиксированного IP адреса домашней сети. Это в принципе должно позволить настройке серверов сохранять соединение. Несмотря на то, что такое решение проблемы является не идеальным, это может стать еще одним полезным инструментом в арсенале сетевого администратора при решении задач, связанных с настройкой на роутере NAT.

    PAT или Port Address Translation

    Port Address Translation является реализацией Cisco Rapt, которая отображает несколько частных IP адресов в виде одного публичного. Таким образом, несколько адресов могут быть отображены как адрес, потому что каждый из них отслеживается при помощи номера порта. PAT использует уникальные номера портов источника на внутреннем глобальном IP, чтобы различать направление передачи данных. Данными номерами являются целые 16-разрядные числа. Общее число внутренних адресов, которые могут быть переведены на один внешний адрес, теоретически может достигать 65536. В реальности же количество портов, на которые может быть назначен единый адрес IP, составляет примерно 4000. PAT, как правило, пытается сохранить исходный порт «оригинала». В том случае, если он уже используется Port Address Translation назначает первый доступный номер порта, начиная с начала соответствующей группы. Когда доступных портов не остается и есть более одного внешнего IP адреса, PAT переходит к следующему для выделения исходного порта. Данный процесс будет продолжаться до тех пор, пока доступные данные не закончатся. Служба Cisco отображает адрес и порт. Она сочетает в себе адрес порта перевода и данные туннелирования пакетов IPv4 по внутренней сети IPv6. По сути это альтернативный вариант Carrier Grade NAT и DS-Lite, который поддерживает IP трансляции портов и адресов. Это позволяет избежать проблем, связанных с установкой и поддержанием соединения. Также это позволяет обеспечить механизм перехода для развертывания IPv6.

    Методы перевода

    Известно несколько основных способов реализации перевода сетевого адреса и порта. В определенных прикладных протоколах требуется определить внешний адрес NAT, используемый на другом конце соединения. Также часто необходимо изучить и классифицировать тип передачи. Как правило, это делается потому, что желательно между двумя клиентами, находящимися за отдельными NAT, создать прямой канал связи. Для этой цели был разработан специальный протокол RFC 3489, который обеспечивает простой обход UPD через NATS. Он на сегодняшний день уже считается устаревшим, так как в наши дни такие методы считаются недостаточными для правильной оценки работы устройств. В 2008 году был разработан протокол RFC 5389, в котором были стандартизованы новые методы. Данная спецификация сегодня называется Session Traversal. Она представляет собой специальную утилиту, предназначенную для работы NAT.

    Создание двусторонней связи

    Каждый пакет UDP и TCP содержит IP адрес источника и его номер порта, а также координаты конечного порта. Номер порта имеет очень важное значение для получения таких общедоступных услуг, как функционал почтовых серверов. Так, например, порт 25 подключается к SMTP почтового сервера, а порт 80 подключается к программному обеспечению веб-сервера. Существенное значение имеет также и IP адрес общедоступного сервера. Данные параметры должны быть достоверно известны тем узлам, которые намерены установить соединение. Частные IP адреса имеют значение только в локальных сетях.